9		Subject Code:- ABT0611					
	Roll.	No:					
NOID	DA INSTITUTE OF ENGINEERING AND T	FECHNO		DE A	TED		
NOID	(An Autonomous Institute Affiliate		•		I LK I	(OII	UΑ
	B.Tech	0.00 11111	c, = 0.011	0 ,, ,			
	SEM: VI - THEORY EXAMINAT	ΓΙΟΝ (20	20.)			
	Subject: Bioreactor Analys	sis and De	esign				400
	3 Hours l Instructions:			N	Max. M	arks	s: 100
	erify that you have received the question paper	with the co	orrect coi	urse. c	ode. br	ancl	n etc.
	Question paper comprises of three Sections -A,						
Question	ns (MCQ's) & Subjective type questions.				-		
	mum marks for each question are indicated on r	_	side of e	ach q	uestion.		
	rate your answers with neat sketches wherever i	necessary.					
	ne suitable data if necessary. rably, write the answers in sequential order.						
v	eet should be left blank. Any written material aj	fter a blani	k sheet w	ill not	be		
	ed/checked.						
SECTIO	ON-A						20
1. Attem	npt all parts:-						
1-a.	Which of the following factors should be con-	sidered in	bioreacto	r desi	gn? (CO)1,	1
	K1)	1					
(2	(a) Oxygen transfer rate						
(t	(b) pH control) '					
(0	(c) Heat transfer						
(0	(d) All of the above						
1-b.	The equation for Del factor is	_ (CO1, K	(1)				1
(2	(a) $\nabla = \ln (N0/Nt)$						
(t	(b) $\nabla = \ln (Nt/N0)$						
(0	(c) $\nabla = \ln (N0)$						
(0	$\nabla = \ln (NONt)$						
1-c.	method involves the determination of th	e maximu	m rate of	oxida	tion of		1
	sodium sulfite to sodium sulfate in the presen						
(2	(a) Sulfite oxidation method						
(t	(b) Oxygen balance method						
(0	(c) Dynamic method						
(0	d) None of the above						
1-d.	Which of the following parameter of fluid flo number? (CO2, K1)	w does not	affect re	ynold	ls		1

	(a)	density	
	(b)	fluid velocity	
	(c)	temperature	
	(d)	cross sectional area	
1-e.	The function of piping in a bioreactor system is to: (CO3, K2)		
	(a)	Contain the media	
	(b)	Transfer gases	
	(c)	Provide structural support	
	(d)	Sampling	
1-f.	W	That type of valve allows flow in only one direction? (CO3, K2)	1
	(a)	Gate valve	
	(b)	Globe valve	
	(c)	Check valve	
	(d)	Ball valve	
1-g.	W	Thich of the following is not an aspect in the context of scale-down? (CO4, K2)	1
	(a)	Number of generations	
	(b)	Oxygen Transfer rate	
	(c)	Mixing	
	(d)	Temperature	
1-h.	P	acked bed reactors are best used for: (CO4, K2)	1
	(a)	Suspended cells	
	(b)	Immobilized cells	
	(c)	Animal cells	
	(d)	Plant cells	
1-i.		Iaintaining constant gas flow rate per unit volume during scale-up ensures: (CO5, 2)	1
	(a)	Similar oxygen availability	
	(b)	Reduced shear stress	
	(c)	Increased mixing time	
	(d)	Decreased nutrient concentration	
1-j.	S	hear-sensitive cells are most affected by: (CO5, K3)	1
	(a)	High impeller tip speeds	
	(b)	Low agitation rates	
	(c)	Uniform mixing	
	(d)	Constant temperature	
2. Att	tempt a	all parts:-	
2.a.		That are the advantages and disadvantages of continuous sterilization? (CO1, K2)	2
2.b.		efine residence time distribution in the context of chemical reactors. (CO2, K2)	2

2.c.	What do you understand by productivity for single cell protein? (CO3, K2)	2
2.d.	List any two plant hormones commonly added to media. (CO4, K1)	2
2.e.	How does cell density affect nutrient consumption rates? (CO5, K3)	2
SECTIO	0N-B	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Discuss in detail about filter sterilization and sterilization by radiation? (CO1, K2)	6
3-b.	Draw a flow diagram of bioprocessing steps? (CO1, K2)	6
3-c.	Write short note on rheology of fermentative fluids. (CO2, K2)	6
3-d.	Interpret the impact of different flow patterns (e.g., plug flow vs. mixed flow) on the RTD and how this influences reactor design and operation. (CO2, K4)	6
3.e.	Write short note on controlling devices for environmental factors in a bioraector (CO3, K2)	6
3.f.	What are the effects of scale up on nutrient availability and supply? (CO4, K2)	6
3.g.	What are some potential safety hazards associated with high impeller speeds in a bioreactor? (CO5, K2)	6
SECTIO	<u>DN-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Explain the role of temperature and pH control in bioreactor design. Discuss how these factors influence microbial growth and product formation. (CO1, K2, K3)	10
4-b.	Explain the application of energy balance in controlling bioreactor temperature. Describe what happens if heat removal is not properly designed in an exothermic fermentation process. (CO1, K3)	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Describe various characteristics of oxygen uptake in cells and significance of critical oxygen tension. (CO2, K2)	10
5-b.	Summarize the impact of fermentation broth viscosity on mass transfer processes, such as oxygen and nutrient diffusion, and the implications for microbial growth and product formation. (CO2, K3)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Explain the principles, advantages, and disadvantages of various types of bioreactors employed in different industrial applications. (CO3, K2)	10
6-b.	Compare bubble column and airlift bioreactors in terms of gas-liquid mass transfer. (CO3, K3)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	How do correction factors come into play when applying geometric similarity to scale up a process? What are some common methods for evaluating correction factors, and how do they work? (CO4, K4)	10
7-b.	Describe the advantages of using a continuous stirred-tank reactor (CSTR) for wastewater treatment in a sugar mill. (CO4, K3)	10

- 8. Answer any one of the following:-
- 8-a. What are some challenges associated with temperature control in a bioreactor? 10 How can advances in temperature control technology impact bioprocesses? (CO5, K3)
- 8-b. Evaluate the effectiveness of scale-down models in predicting large-scale performance. (CO5, K4)

